DOI: 10.3969/j. issn. 1000-9760.2017.03.006

济宁地区汉族人群 19 个 STR 基因座遗传多态性分析*

侯 森¹ 马 莉³ 党 珍¹ 张 晗¹ 李 璐² 王业全¹△ (¹济宁医学院法医学与医学检验学院 济宁 272067;²济南大学 济南 250062; ³济宁医学院附属济宁市第一人民医院 济宁 272011)

摘 要 目的 对山东省济宁地区 889 名无关汉族个体进行 19 个 STR 基因座遗传多态性分析 ,为相关研究和鉴定提供基础数据。方法 采用 Goldeneye 20A 试剂盒人类荧光标记 STR 复合扩增检测试剂 (基点认知公司) 进行直接扩增 经测序后获得所有个体 19 个 STR 基因座的 DNA 分型 应用 Power Stats V12 软件计算等位基因的分布频率等群体遗传数据。结果 在 19 个 STR 基因座中共检出 246 个等位基因和 926 种基因型 基因频率分布在 $0.0006 \sim 0.5299$ 之间 杂合度分布在 $0.642 \sim 0.918$ 之间 匹配概率在 $0.012 \sim 0.207$ 之间 个体识别能力在 $0.793 \sim 0.988$ 之间 多态信息含量在 $0.570 \sim 0.920$ 之间 和非父排除概率在 $0.345 \sim 0.831$ 之间。各基因座的基因型分布均符合 Hardy-Weinberg 平衡定律 (P>0.05)。结论 19 个 STR 基因座具有高多态性和较好识别能力 在该地区汉族人群的多态性研究中具有较高的应用价值。

关键词 遗传多态性; STR; 济宁地区

中图分类号:DF795.2 文献标识码:B 文章编号:1000-9760(2017)06-176-05

Polymorphism analysis of 19 autosomal short-tandem repeat loci in Han population of Jining

HOU Sen¹ MA Li³ DANG Zhen¹ ZHANG Han¹ LI Lu² ,WANG Yequan¹△ (¹Institute of Forensic Medicine and Laboratory Medicine Jining Medical University Jining 272067 ,China; ¹ Jinan University Jinan 250062 ,China;

Abstract: Objective To investigate 19 short-tandem repeat loci (STR) genetic polymorphism of 889 Chinese Han population in Jining region by the DNA database resources from the center of forensic science of Jining medical university. Methods Using Goldeneye^TM DNA ID System 20A kit direct amplification and sequencing we got DNA typing of the 19 STR loci and analyzed the genetics data by PowerStats V12. Results The Goldeneye 20A System for 19 STR loci had an allele frequencies ranging from 0.0006 to 0.5299 heterozygotes ranging from 0.642 to 0.918 matching probability (Pm) ranging from 0.012 to 0.207 power of discrimination (DP) ranging from 0.793 to 0.988 polymorphism information content (PIC) ranging from 0.570 to 0.920 and power of exclusion (PE) ranging from 0.345 to 0.831. No significant deviation from Hardy-Weinberg expectations was found for all the loci (P>0.05). Conclusion The 19 STR loci are highly polymorphic and identification ability in Han population of Jining.

Keywords: Polymorphism; Short-tandem repeat; Jining

STR(short-tandem repeat) 是目前法医物证鉴定中常规使用的长度多态性遗传标记,其等位基因片段长度多在400bp以下,扩增成功率高,阳性

率和检测灵敏度高,尤其使用于降解、陈旧和腐败检材的分型鉴定。一个 STR 基因座能否用作法医 DNA 分析的遗传标记需要进行法医学应用评估,评估内容主要涉及遗传标记的基本特征(包括遗传方式、检测技术、染色体定位和多态性类型)、种属特异性、分型稳定性、可重复性、群体遗传调查和抗 PCR 抑制剂干扰能力等。本文主要通过群体

³ Jining First People's Hospital & the Affiliated Hospital of Jining Medical University Jining 272011 China)

^{* [}基金项目]济宁医学院校级青年基金项目(JYQ14KJ 11、JY2015KJ006);大学生创新训练计划项 目(cx2016028、201610443028);山东省教育 科学规划项目(YC2017036)

^{△ [}通信作者]王业全 E-mail: wangyequan1103@163.com

遗传调查对济宁地区 889 名无关汉族个体常染色体 19 个 STR 基因座进行基因频率和多态性参数分析,旨在获得济宁地区汉族人群相关基因座的基因数据,为法医学个体识别、亲权鉴定[1]、群体遗传学提供相关数据。

1 材料与方法

1.1 样本来源

血液样本均来源于济宁医学院司法鉴定中心 DNA 数据库资源 ,济宁地区人群中 889 名无关汉 族个体 ,以 FTA 卡形式保存。

1.2 仪器与试剂

GeneAmp 9700 型 PCR 扩增仪(美国 AB 公司) 3500 型遗传分析仪(美国 AB 公司), Goldeneye^TM DNA ID System 20A 试剂盒(中国基点认知公司)

1.3 STR 扩增及分型检测

FTA 卡血样利用采用 Goldeneye 20A 试剂盒人类荧光标记 STR 复合扩增检测试剂 ,经 PCR 复合扩增 扩增体系和反应条件参照相关试剂盒说明书进行 ,扩增产物经 ABI3500 自动遗传分析仪(美国 AB 公司)进行电泳检测 通过 GeneMapper—

ID-X 软件分析 获得 19 个 STR 基因座分型结果。

1.4 统计学方法

应用 Hardy-Weinberg 平衡软件对 19 个 STR 基因座的基因型数据进行 χ^2 检验。采用 Power-Stats V12 软件统计基因频率并计算杂合度(H)、匹配概率(Pm)、个体识别能力(DP)、多态信息含量 (PIC)、非父排除概率(PE) 和父权指数(TPI) 和基因多样性(GD) 等遗传学参数 [2],基因多样性(GD) 按公式 GD = n($1-\sum Pi^2$) /(n-1) 计算 其中 Pi 为等位基因频率。

2 结果

2.1 基因座分型图谱

889 个样本经扩增、电泳、分析后得到 19 个 STR 基因座图谱。见图 1。

2.2 基因频率分布

889 名济宁地区个体在 19 个 STR 基因座共检出 246 个等位基因和 926 种基因型 基因频率分布在 $0.0006 \sim 0.5299$ 之间。经 χ^2 检验 ,各基因座的基因型分布均符合 Hardy-Weinberg 平衡 (P > 0.05) [3]。见图 1、表 2。

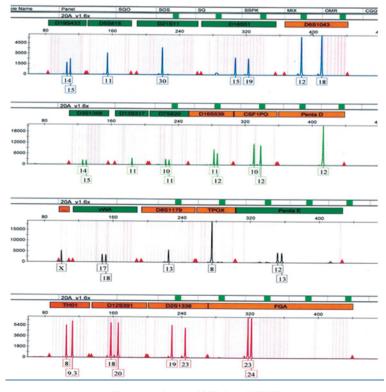


图 1 19 个 STR 基因座分型图谱

表 1 济宁地区 889 名汉族个体 19 个 STR 基因座等位基因与基因型计数

基因座	等位基因	基因型	基因座	等位基因	基因型						
D19S433	10	33	D3S1358	10	25	Penta D	11	41	TH01	7	21
D5S818	9	29	D13S317	8	27	vWA	9	28	D12S391	16	59
D21S11	19	67	D7S820	10	32	D8S1179	11	42	D2S1338	15	64
D18S51	19	81	D16S539	8	28	TPOX	7	16	FGA	23	81
D6S1043	20	76	CSF1PO	10	28	Penta E	24	148	合计	246	926

表 2 济宁地区 889 名汉族个体 19 个 STR 基因座的等位基因频率

D19S433		D5S818		D21S11		D18S51		D6S1043		D3S1358	
A	F	A	F	A	F	A	F	A	F	A	F
7	0.0011	7	0.0112	27	0.0023	9	0.0022	8	0.0011	11	0.0006
8	0.0011	8	0.0022	28	0.0423	9.2	0.0011	9	0.0006	12	0.0006
9	0.0484	9	0.0675	28.2	0.0040	10	0.0034	10	0.0332	13	0.0011
10	0.2604	10	0.1924	29	0.2720	11	0.0017	11	0.0922	14	0.0433
11	0.2362	11	0.3352	29.2	0.0006	12	0.0382	12	0.1204	15	0.3774
11.1	0.0006	12	0.2368	30	0.2788	13	0.2160	13	0.1462	16	0.3240
12	0.3588	13	0.1429	30.2	0.0130	14	0.2103	14	0.1423	17	0.1834
13	0.0810	14	0.0107	30.3	0.0073	15	0.1699	15	0.0157	18	0.0636
14	0.0107	15	0.0011	31	0.1010	16	0.1209	16	0.0028	19	0.0051
15	0.0017	D	13S317	31.2	0.0717	17	0.0630	17	0.0332	20	0.0011
	07S820	A F		32	0.0288	18 0.0456		17.3	0.0017	D16S539	
A	F	7	0.0006	32.2	0.1242	19	0.0439	18	0.1884	A	F
7	0.0023	8	0.2474	33	0.0034	20	0.0304	19	0.1721	8	0.0062
8	0.1315	9	0.1217	33.2	0.0435	21	0.0264	20	0.0371	9	0.2812
9	0.0623	10	0.1580	34	0.0006	22	0.0157	20.3	0.0006	10	0.1423
9.1	0.0017	11	0.2486	34.1	0.0006	23	0.0073	21	0.0067	11	0.2537
10	0.1857	12	0.1747	34.2	0.0051	24	0.0022	21.3	0.0022	12	0.1963
10.1	0.0012	13	0.0404	35	0.0006	25	0.0006	22	0.0006	13	0.1091
11	0.3411	14	0.0087	35.2	0.0006	26	0.0011	22.3	0.0022	14	0.0107
12	0.2270	Penta E		CSF1PO		D12S391		24.3	0.0006	15	0.0006
13	0.0437	A	F	A	F	A	F		FGA		TH01
14	0.0035	5	0.0599	7	0.0011	15	0.0169	A	F	A	F
P	Penta D	7	0.0028	8	0.0011	16	0.0045	16	0.0006	4	0.0017
A	F	8	0.0113	9	0.0484	17	0.1029	17	0.0011	6	0.0863
6	0.0045	9	0.0062	10	0.2604	17.2	0.0006	18	0.0186	7	0.2607
7	0.0040	10	0.0463	11	0.2362	17.3	0.0006	19	0.0411	8	0.0643
8	0.0526	11	0.1209	11.1	0.0006	18	0.2492	20	0.0518	9	0.5299
9	0.2794	12	0.0870	12	0.3588	18.2	0.0006	20.2	0.0006	9.3	0.0356
10	0.1324	13	0.0424	13	0.0810	19	0.2002	21	0.0991	10	0.0214
11	0.1578	14	0.0898	14	0.0107	20	0.1631	21.2	0.0011	D	2S1338
12	0.1861	15	0.1051	15	0.0017	21	0.1153	22	0.1678	A	F
13	0.1369	16	0.1000	D	8S1179	22	0.0855	22.2	0.0056	9	0.0006
14	0.0368	17	0.0718	A	F	23	0.0321	23	0.2494	16	0.0090
15	0.0079	17.3	0.0006	8	0.0011	24	0.0208	23.2	0.0090	16.1	0.0006
16	0.0017	18	0.0831	9	0.0006	25	0.0067	24	0.1852	17	0.0540
	vWA	18.3	0.0006	10	0.0844	26	0.0006	24.2	0.0073	18	0.1153
A	F	19	0.0531	11	0.0793	28	0.0006	25	0.1025	19	0.1721
13	0.0006	19.3	0.0006	12	0.1310	ŗ	ГРОХ	25.2	0.0034	20	0.1361
14	0.2475	20	0.0435	13	0.2469	A	F	26	0.0422	21	0.0236
15	0.0208	21	0.0350	14	0.1952	8	0.5052	26.2	0.0006	22	0.0467
16	0.2025	22	0.0181	15	0.1592	9	0.1187	27	0.0101	23	0.2092
17	0.2435	23	0.0107	16	0.0883	10	0.0210	27.2	0.0011	24	0.1614
18	0.1839	24	0.0085	17	0.0118	11	0.3172	28	0.0006	25	0.0585
19	0.0872	25	0.0023	18	0.0022	12	0.0332	29	0.0006	26	0.0084
20	0.0118	26	0.0006			13	0.0041	30	0.0006	27	0.0028
21	0.0022					14	0.0006			28	0.0017

2.3 多态性评估参数

19 个基因座的杂合度分布在 0.642 ~ 0.918 之间 ,匹配概率在 0.012 ~ 0.207 之间 ,个体识别能 力在 0.793 ~ 0.988 之间 ,多态信息含量在 0.570 ~0.920 之间,非父排除概率在 0.345 ~0.831 之间,累积非父排除概率为 0.99999999819923。各基因座遗传学参数见表 3。

表3	济宁地区 889 名	汉族个体 19~	トSTR 基因座的	的法医遗传学参数
Н	Pm	DP	PIC	PE

基因座	Н	Pm	DP	PIC	PE	TPI	GD
D19S433	0.747	0.111	0.889	0.690	0.504	1.980	0.739
D5S818	0.763	0.089	0.911	0.730	0.532	2.110	0.770
D21S11	0.837	0.060	0.940	0.790	0.670	3.080	0.814
D18S51	0.847	0.040	0.960	0.840	0.689	3.270	0.855
D6S1043	0.891	0.034	0.966	0.850	0.777	4.580	0.867
D3S1358	0.714	0.133	0.867	0.660	0.451	1.750	0.714
D13S317	0.814	0.068	0.932	0.780	0.626	2.690	0.806
D7S820	0.808	0.088	0.912	0.740	0.614	2.600	0.775
D16S539	0.780	0.080	0.920	0.750	0.562	2.270	0.787
CSF1PO	0.747	0.111	0.889	0.690	0.504	1.980	0.739
Penta D	0.836	0.057	0.943	0.800	0.667	3.050	0.823
vWA	0.792	0.072	0.928	0.770	0.584	2.400	0.797
D8S1179	0.837	0.047	0.953	0.820	0.669	3.070	0.838
TPOX	0.669	0.207	0.793	0.570	0.383	1.510	0.629
PentaE	0.918	0.012	0.988	0.920	0.831	6.060	0.924
TH01	0.642	0.182	0.818	0.590	0.345	1.400	0.639
D12S391	0.827	0.047	0.953	0.820	0.650	2.890	0.839
D2S1338	0.863	0.036	0.964	0.840	0.720	3.640	0.860
FGA	0.839	0.043	0.957	0.830	0.673	3.100	0.849

3 讨论

在群体遗传学中样本量越大,代表性就越强,所得资料越可信。本文分析 889 名济宁地区无关汉族个体 在19 个 STR 基因座共检出 246 个等位基因和 926 种基因型,累积非父排除概率为0.99999990819923。其样本数和统计出的等位基因数和基因型数均高于之前对该地区的相关研究^[4] 具有较好的代表性。

一个基因座的遗传多态性是指在人群中能够保持稳定的频率,遗传多态性高的基因座随样本量的变化波动较小,遗传多态性低的基因座随样本量的变化波动较大。按照 Gill 等^[5]认为 DP≥0.9 从≥0.7 的基因座具有较高的遗传多态性,依此为标准,本文分析的 19 个 STR 基因座在济宁地区人群中,有 Penta E 等 14 个基因座均具有高度遗

传多态性和高度杂合性,具有高鉴别能力,其中Penta E基因座 GD 最高,为 0.924,TPOX 基因座 GD 最低,为 0.629。而 D19S433、D3S1358、CSF1PO、TPOX 及 TH01 5 个 STR 基因座遗传多态性稍低,与中国广州、苏州、云南等南方地区汉族人群报道基本一致^[6-9],与少数民族和国外存有差别^[10-11]。可能因为还需要增加大规模样本量,也可能因为该 19 个 STR 基因座选自美国人群,与中国汉族人群存在差异。

总体来说,济宁地区汉族人群的 19 个 STR 基因座具有较高的遗传多态性,是比较理想遗传标记系统。但有 D19S433、D3S1358、CSF1PO、TPOX及 TH01 5 个 STR 基因座对于济宁地区汉族人群遗传多态性稍低,该相关遗传标记系统效能仍有进一步优化的空间。本文所得到的 19 个 STR 基因座的遗传学参数可为济宁汉族人群法医个体识

别、亲权鉴定及遗传学研究提供依据和有效补充。

参考文献:

- [1] 周保成,许天龙,毛华芬,等. 19 个 STR 基因座分型 在 741 例亲子鉴定中的应用 [J]. 中国法医学杂志, 2015, 30(4): 396-398. DOI: 10. 13618/j. issn. 1001-5728. 2015. 04. 014.
- [2] 赵方 伍新尧 蔡贵庆. Modified-Powerstates 软件在法 医生物统计中应用[J]. 中国法医学杂志 ,2003 ,18 (5):297-299.
- [3] Raymond M ,Rousset F. GENEPOP (Version 1. 2): Population genetics software for exact tests and ecumenicism [J]. Journal of Heredity ,1995 ,86(3): 248-249. DOI: 10.1093/oxfordjournals. jhered. a111573.
- [4] 张国安 宋如莹 李璐 等. 山东济宁地区汉族人群 15 个 STR 基因座遗传多态性 [J]. 中国法医学杂志, 2016 31(6):619-620. DOI: 10. 13618/j. issn. 1001-5728. 2016. 06. 026.
- [5] Gill P "Urquhart T A "Millican E et al. A new method of STR interpretation using inferential logic—development of a criminal intelligence database [J]. Int J Legal Med , 1996 ,109(1): 14-22. DOI: 10.1007/bf01369596.
- [6] Chen L ,Lu H ,Qiu P ,et al. Polymorphism analysis of 15 STR loci in a large sample of Guangdong (Southern China) Han population [J]. Leg Med (Tokyo) ,2015 ,17 (6): 489-492. DOI: 10. 1016/j. legalmed. 2015. 10.

001.

- [7] 董迎春,李诗柳,周如华,等. 大规模汉族个体 15 个 STR 基因座遗传多态性调查 [J]. 中国法医学杂志, 2016, 31(6):630-632. DOI: 10. 13618 / j. issn. 1001-5728. 2016. 06. 031.
- [8] 靳婵婵 , 贺静 , 王蕾 , 等. 云南汉族 15 个短串联重复序列基因座遗传多态性特征及分析 [J]. 中国免疫学杂志 , 2016 , 32(10): 1428-1436. DOI: 10. 3969/j. issn. 1000-484X. 2016. 10. 005.
- [9] Wang X ,Chen W ,Zhao L ,et al. Genetic polymorphism analysis of 3 short tandem repeat loci on chromosome 21 in Chinese Han population in Shaanxi Province [J]. Journal of Southern Medical University ,2008 ,28 (10): 1906-1908.
- [10] 魏丽 涨涛 孙数毅 等. 中国4 个少数民族人群18 个 STR 基因座遗传多态性 [J]. 中国法医学杂志 2015, 30(3): 301-304. DOI: 10. 13618/j. issn. 1001-5728. 2015.03.023.
- [11] Hossain T ,Hasan M ,Mazumder AK ,et al. Genetic polymorphism studies on 22 autosomal STR loci of the PowerPlex Fusion System in Bangladeshi population [J]. Leg Med (Tokyo) ,2016 ,23: 44-46. DOI: 10. 1016 / j. legalmed. 2016. 09. 005.

(收稿日期 2017-05-05) (本文编辑:甘慧敏)

(上接第175页)

- [8] Boumezbeur F ,Petersen KF ,Cline GW ,et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy [J]. J Neurosci ,2010 ,30 (42): 13983-13991. DOI: 10.1523/JNEUROSCI. 2040-10. 2010.
- [9] Bélanger M ,Allaman I ,Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation [J]. Cell Metab 2011 ,14(6): 724-738. DOI: 10. 1016/j. cmet. 2011. 08. 016.
- [10] Gibbs ME ,Lloyd HG ,Santa T ,et al. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence [J]. J Neurosci Res 2007 ,85 (15): 3326-3333. DOI: 10. 1002/jnr. 21307.
- [11] Schurr A Payne RS Miller JJ et al. Blockade of lactate transport exacerbates delayed neuronal damage in a rat

- model of cerebral ischemia [J]. Brain Res 2001 & 895 (1-2): 268-272. DOI: 10. 1016/s0006-8993 (01) 02082-0.
- [12] Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing [J]. PLoS One 2011 6(12): e28427. DOI: 10. 1371/ journal. pone. 0028427.
- [13] Lu W ,Huang J Sun S ,et al. Changes in lactate content and monocarboxylate transporter 2 expression in Aβ– treated rat model of Alzheimer 's disease [J]. Neurol Sci , 2015 , 36 (6): 871-876. DOI: 10.1007/s10072– 015-2087-3.
- [14] Pierre K Pellerin L. Monocarboxylate transporters in the central nervous system: distribution regulation and function [J]. J Neurochem 2005 94(1): 1-14. DOI: 10. 1111/j. 1471-4159. 2005. 03168. x.

(收稿日期 2017-04-09) (本文编辑:石俊强)